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In this work, a new formulation for a central scheme recently introduced by A. A. I. Peer et al. is performed.
It is based on the staggered grids. For this work, first a time discritization is carried out, followed by the space
discritization. Spatial accuracy is obtained using a piecewise cubic polynomial and fourth-order numerical
derivatives. Time accuracy is obtained applying a Runge-Kutta(RK) scheme. The scheme proposed in this
work has a simpler structure than the central scheme developed in (Peer et al., Appl Numer Math 58 (2008),
674–688). Several standard one-dimensional test cases are used to verify high-order accuracy, nonoscillatory
behavior, and good resolution properties for smooth and discontinuous solutions. © 2009 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 26: 1675–1692, 2010
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I. INTRODUCTION

Hyperbolic systems of conservation laws arise in many practical problems such as biological
models [1], shallow water flow [2], discrete kinetic models [3], magnetohydrodynamic (MHD)
[4], and many other areas in science and engineering [5,6]. Analytical solutions are available only
in very few special cases. Therefore, the numerical solution of hyperbolic systems of conservation
laws has been an important field of research for the last decades.

The schemes more commonly used in context are the so-called shock capturing schemes(see,
for example, the book by LeVeque [7]). Among shock capturing schemes, the most commonly
used are finite volume schemes. For these schemes, the conservation laws are integrated in space
and time on control volumes. Therefore, the equation is transformed in integral form. In this
formulation, to update the solution and the cell averages, it is necessary to evaluate numerical
intermediate values of the quadrature formula and flux functions at the edge of each cell.

The necessity of high accuracy and sharp resolution of the discontinuities motivated the
development of high order techniques for conservation laws, for example, see [8–10]. Most
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high order shock capturing schemes are obtained in conservative form. Then the conservation
properties of the systems of hyperbolic conservation laws are automatically satisfied. These
schemes are based on three main ingredients. The main ingredients are the non-oscillatory
reconstruction, a suitable numerical flux function, and, of course, a suitable discretization
in time.

Among finite volume methods, one should distinguish between upwind and central schemes.
It is known that a scheme is upwind if it makes extensive use of the characteristic informa-
tion of the system, while a scheme is central if characteristic information is not used. In this
work, we are interested in central scheme such as black-box, Jacobian-free solvers, that is, a
scheme which requires little knowledge about the eigenstructure of the system of conservation
laws.

The prototype of upwind schemes is first order upwind, which is first order Godunov method
[11], based on the solution of the Riemann problem at cell edges. The prototype of central
schemes is first order Lax-Friedrichs (LxF) scheme [12]. Like the Godunov method, it is based
on piecewise constant approximate solution and unlike the Godunov method, the LxF scheme is
Riemann-solver-free.

Generally, upwind schemes gain sharper resolution than central schemes for the same order of
accuracy and spatial grids because they require some knowledge about the eigenstructure, but are
more expensive, and are more complicated to be implemented. For this reason, in recent years,
central schemes got considerable attention.

A second-order central procedure was proposed by Nessyahu and Tadmor (NT) [9]. The NT
scheme is based on the reconstruction of piecewise linear polynomial from the known cell-
averages. Because the NT scheme is Riemann-solver-free, so it is simple to be implemented. Also
this scheme was extended to multidimensional problems [13].

A third-order central scheme was proposed by Liu and Tadmor [8]. This method is based on the
nonoscillatory third-order reconstruction of Liu and Osher [14]. This scheme has a major advan-
tage of the central schemes over the upwind schemes, in that no Riemann solvers are involved.
The central schemes have been implemented successfully in many areas, such as semiconduc-
tor modeling [15], kinetic models [16], extended thermodynamics [16, 17], and Hamilton-Jacobi
equation [18].

Central Runge-Kutta(CRK) schemes are another approach for solving hyperbolic conservation
laws. These methods were proposed by Pareschi, Puppo, and Russo [19].

In this work, we present a new fourth-order CRK scheme based on staggered grids. For this,
we use the reconstruction of Peer et al. [10] and Runge-Kutta scheme of fourth-order. The new
scheme is obtained starting from the equation for the evolution of cell averages on staggered
cells. The new formulation obtained in this article has a simpler structure than the previous cen-
tral scheme based on staggered grids [10]. It should be noted that in this new formulation it is
not necessary to use quadrature formula (Simpson’s rule) for the fluxes function which in turn
implied the evaluation of Natural Continuous Extension (NCE) of Runge-Kutta (RK) scheme
[20]. Then it requires a smaller number of evaluations per time step, therefore, the new scheme is
more efficient than the previous central scheme.

This article is organized as follows. In Section II we give a brief review of Godunov-type
methods (central and upwind schemes) for one-dimensional hyperbolic conservation laws, and in
Section III, we describe the new formulation of fourth-order central Runge-Kutta (CRK) scheme.
A linear stability analysis of the new scheme is carried out in Section IV. In Section V, we report
the numerical results computed using the new technique. Finally, Section VI ends this article with
a brief summary.
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II. REVIEW OF GODUNOV-TYPE METHODS

We are interested in computing approximate solutions to the hyperbolic systems of conservation
laws

ut + f (u)x = 0, (1)

with u ∈ R
m, f : R

m → R
m is continuously differentiable subject to the initial condition

u(x, 0) = u0(x).
We will denote by Ix the cell centered around the point x, that is, Ix = [x − h

2 , x + h

2 ]. Also let
�t be the mesh width in time, that is, �t = tn+1 − tn and un

j is used for u(xj , tn). Introduce the
cell averages of u on Ij := Ixj

and I
j+ 1

2
:= Ix

j+ 1
2

at time tn

ūn
j = 1

h

∫
Ij

u(x, tn)dx, ūn

j+ 1
2

= 1

h

∫
I
j+ 1

2

u(x, tn)dx.

Integrating (1) over Ix , we obtain

dū

dt
|x = − 1

h

[
f

(
u

(
x + h

2
, t

))
− f

(
u

(
x − h

2
, t

))]
. (2)

Here dū

dt
|x = 1

h

∫
Ix

ut (ξ , t)dξ . So far, Eq (2) is exact and gives the evolution in time of the cell
averages. Finite volume schemes are based on the discretization of (2) in time. Once one has a
semidiscrete evolution equation for the cell average, as (2), one needs a numerical ODE solver,
rather than a quadrature formula. Starting from the old cell averages {ūn} at time tn, we look
for the cell averages at next time step tn+1. A key point in both upwind and central schemes is
the reconstruction step. From the cell averages {ūn}, it is necessary to reconstruct the initial data
w(x, tn) ∼ u(x, tn), that is,

w(x, tn) = P n
j (x), x

j− 1
2

< x < x
j+ 1

2
,

where P n
j (x) should be conservative, with r as order of accuracy, and non-oscillatory. The recon-

struction in general will be discontinuous at the end points of the interval Ij . Now, integrating (2)
over [tn, tn+1], we obtain

ūn+1(x) = ūn(x) − 1

h

∫ tn+1

tn

[
f

(
u

(
x + h

2
, t

))
− f

(
u

(
x − h

2
, t

))]
dt . (3)

As is said in [21], the choice of x = xj in (3) results in an upwind scheme. The solution then
may be nonsmooth in the neighborhood of the points {x

j+ 1
2
}, and the evaluation of the flux inte-

grals in (3) requires the use of a computationally expensive (approximate) Riemann solver and
characteristic decomposition. If x = x

j+ 1
2

in (3), we obtain central techniques, namely

w̄n+1

j+ 1
2

= 1

h

∫
I
j+ 1

2

w(x, tn)dx − 1

h

[∫ tn+1

tn
f (w(xj+1, t))dt −

∫ tn+1

tn
f (w(xj , t))dt

]
. (4)

In contrast to the upwind method, the solution is smooth in the neighborhood of the points {xj }.
Then, we can use an appropriate quadrature formula for the time integrals in (4). The intermediate
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values of the quadrature formula can be computed either by Taylor expansion [8] or by Natural
Continuous Extension (NCE) of the Runge-Kutta scheme [22].

The staggered cell averages w̄n

j+ 1
2

which are used on the right hand side of (4) are given by

w̄n

j+ 1
2

= 1

h

∫
I
j+ 1

2

w(x, tn)dx = 1

h


∫ x

j+ 1
2

xj

P n
j (x)dx +

∫ xj+1

x
j+ 1

2

P n
j+1(x)dx


 .

III. DESCRIPTION OF THE FOURTH-ORDER CRK SCHEME

Before describing a new fourth-order Central Runge-Kutta scheme, we shall briefly describe a
suitable notation for Runge-Kutta schemes applied to the initial value problems. Let us consider

{
y ′ = F(y(t)),
y(t0) = y0.

The solution obtained at time tn+1 with a ν−step explicit RK method of order p can be written as

yn+1 = yn + �t

ν∑
i=1

biK
(i),

where the K(i)’s are the RK fluxes

K(i) = F

(
yn + �t

i∑
j=1

aijK
(j)

)
, i = 1, . . . , ν.

The matrix A = (aij ), and the vector b define uniquely the RK scheme. With the present notation,
A is a ν × ν lower triangular matrix, with zero elements on the diagonal. We are now ready
to describe our new formulation of fourth-order central Runge-Kutta scheme. For this work, if
x = x

j+ 1
2

in (2), we obtain CRK schemes namely

dū

dt

∣∣∣
x
j+ 1

2

= − 1

h
[f (u(xj+1, t)) − f (u(xj , t))]. (5)

Next, this equation is discretized in time with a Runge-Kutta scheme. Therefore, the updated
solution will be given by :

ūn+1

j+ 1
2

= ūn

j+ 1
2

− λ

ν∑
i=1

biY
(i)

j+ 1
2
, (6)

with:

Y
(i)

j+ 1
2

= f
(
u

(i)

j+1

) − f
(
u

(i)

j

)
, u

(i)

j = un
j + λ

i∑
s=1

aisK
(s)

j , (7)
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where K
(i)

j = −f ′(u(i)

j ), and the coefficients bi and aij are given by

b =




1/6
1/3
1/3
1/6


 , A =




0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0


 .

For computing the first expression of the right hand side (6), we use the fourth-order
reconstruction of Peer et al. [10]. Then, we put polynomial P n

j (x) on Ixj
:= Ij in the form:

P n
j (x) = un

j + u′
j

(
x − xj

h

)
+ 1

2!u
′′
j

(
x − xj

h

)2

+ 1

3!u
′′′
j

(
x − xj

h

)3

, x ∈ Ij .

Here, un
j , u′

j /h, u′′
j /h

2, and u′′′
j /h3 are the approximate point values and the first, second, and third

derivatives of u(x, tn) at x = xj , which are reconstructed from the cell averages, {ūn
j }. It should

be noted that this reconstruction [10] satisfies the following three properties:

• P1 − conservation of cell averages: P̄ n
j (x)|x=xj

= ūn
j .

• P2 − Accuracy: w(x, tn) = u(x, tn) + O(h4).
• P3 − Non-oscillatory behavior of

∑
j P n

j (x)χj (x).

Here χj (x) is the characteristic function of Ij .
In order to guarantee property P1, un

j must satisfy

un
j = ūn

j − u′′
j

24
. (8)

Remark. Starting with third-order and higher-order accurate methods, the point values aren’t
equal with cell averages, un

j �= ūn
j .

The NT scheme [9] uses a second-order accurate limiter for the numerical derivative u′
j in the

form

u′
j = MM

(
�ūn

j− 1
2
, �ūn

j+ 1
2

)
. (9)

Here, �ūn

j+ 1
2

= ūn
j+1 − ūn

j and the MinMod limiter (MM) is defined by

MM(x1, x2, · · · ) =



minp{xp} if xp > 0 ∀p,
maxp{xp} if xp < 0 ∀p,
0 otherwise.

We observe that the accuracy of (9) decreases when �ū
j− 1

2
�ū

j+ 1
2

< 0 �= u′
j . Then, the NT

scheme modified the uniform nonoscillatory (UNO) limiter of Harten and Osher [23] by adding
second-order differences to (9) to get high accuracy,

u′
j = MM

(
�ūn

j− 1
2

+ 1

2
MM

(
�2ūn

j−1, �2ūn
j

)
, �ūn

j+ 1
2

− 1

2
MM

(
�2ūn

j , �2ūn
j+1

))
, (10)

where �2ūn
j = �ūn

j+ 1
2

− �ūn

j− 1
2
.
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To satisfy properties P2 − P3, we use the modified UNO limiter of [24]. Similar to the
numerical derivative (9), u′′′

j depends on its two neighboring third-order differences

u′′′
j = MM

(
�3ūn

j− 1
2
, �3ūn

j+ 1
2

)
, (11)

where �3ūn

j+ 1
2

= �2ūn
j+1 −�2ūn

j . For obtaining fourth-order accurate approximations of the first

derivative, put

u′
j = MM

(
�ūn

j− 1
2

+ 1

2
MM

(
�2ūn

j−1 + 7

12
u′′′

j−1, �2ūn
j − 5

12
u′′′

j

)
,

�ūn

j+ 1
2

− 1

2
MM

(
�2ūn

j + 5

12
u′′′

j , �2ūn
j+1 − 7

12
u′′′

j+1

))
, (12)

for further details see [10, 24]. Also, in order to approximate the point values un
j of (8) from the

cell averages {ūn
j }, we put

u′′
j = MM

(
�2ūn

j−1 + u′′′
j−1, �2ūn

j , �2ūn
j+1 − u′′′

j+1

)
. (13)

Then the staggered cell averages ūn

j+ 1
2

are given by

ūn

j+ 1
2

= 1

2

(
ūn

j + ūn
j+1

) − 1

8

(
u′

j+1 − u′
j

) − 1

384

(
u′′′

j+1 − u′′′
j

)
. (14)

Also, to compute the second expression of right hand side (6) we need to approximate f ′
j . For

this purpose, similar to (7) by combining high-order differences of f put

f ′
j = MM

(
�f

j− 1
2

+ 1

2
MM

(
�2fj−1 + 2

3
f ′′′

j−1, �2fj − 1

3
f ′′′

j

)
,

�f
j+ 1

2
− 1

2
MM

(
�2fj + 1

3
f ′′′

j , �2fj+1 − 2

3
f ′′′

j+1

))
, (15)

where

f ′′′
j = MM

(
�3f

j− 1
2
, �3f

j+ 1
2

)
,

for further details see [10].
Our scheme is summarized in the following algorithm : Assuming that the cell averages {ūn

j }
are known, we look for the cell averages at the next time step tn+1.

Step 1. Compute the numerical derivatives u′′′
j , u′′

j , u′
j given by (11), (13), and (12), respectively.

Step 2. Compute the point values un
j with (8).

Step 3. Use the results of Step 2 to compute the u
(i)

j with (7) and (15).
Step 4. Compute the staggered cell averages at time tn+1 according to (6),

ūn+1

j+ 1
2

= 1

2

(
ūn

j + ūn
j+1

) − (gj+1 − gj ), (16)
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where the modified numerical flux gj is obtained by

gj = 1

8
u′

j + 1

384
u′′′

j + λ

6

(
f

(
u

(1)

j

) + 2f
(
u

(2)

j

) + 2f
(
u

(3)

j

) + f
(
u

(4)

j

))
. (17)

IV. STABILITY ANALYSIS

In this section, we report a linear stability analysis, similar to that carried out in [10, 22]. In this
work, we use the notation CRKS4 for the Eqs. (16) and (17). To obtain its critical Courant number
[25], we apply it to the linear advection equation:

ut + ux = 0.

Thus the scheme will take the form

ūn+1

j+ 1
2

= ūn

j+ 1
2

− λ

6
Y

(1)

j+ 1
2

− λ

3
Y

(2)

j+ 1
2

− λ

3
Y

(3)

j+ 1
2

− λ

6
Y

(4)

j+ 1
2

= ūn

j+ 1
2

+ λ

24

(
u′′

j+1 − u′′
j

) − λ
(
ūn

j+1 − ūn
j

) − λ2

6

3∑
i=1

(
K

(i)

j+1 − K
(i)

j

)
,

K
(i)

j = −
(

un
j + λ

i∑
l=1

ai,lK
(l)

j

)′

, i = 1, 2, 3.

Then we can express CRKS4 in terms of cell averages only. We would like to study the linear
stability of CRKS4 with a fixed stencil. The amplification factor is obtained by computing the
evolution of the initial data: ūn

j = ρneijξ , where i2 = −1. By substituting such expression in
CRKS4 for the linear advection equation, we obtain

ūn+1

j+ 1
2

= ρλ(ξ)eiξ/2ūn
j , ξ ∈ [0, 2π ].

The stability of the scheme can be studied by analyzing the function

Pλ(ξ) = |ρλ(ξ)|2.

Let λ∗ be the maximum value of λ for which max0≤ξ≤2π Pλ(ξ) ≤ 1. The CRKS4 scheme is called
stable if λ∗ > 0 exists.

Stencils (j − 3, j − 2, j − 1, j) and (j , j + 1, j + 2, j + 3) are seldom occurred in CRKS4,
so we ignore to study stability region for these stencils. Therefore, there are two possibilities for
u′′′

j , u′′
j , u′

j , and f ′
j that is,

u′′′
j u′′

j u′
j f ′

j

�3ūn

j− 1
2

�2ūn
j �ūn

j− 1
2

+ 1
2

(
�2ūn

j − 5
12�

3ūn

j− 1
2

)
�f

j− 1
2

+ 1
2

(
�2fj − 1

3�
3f

j− 1
2

)
�3ūn

j+ 1
2

�2ūn
j �ūn

j+ 1
2

− 1
2

(
�2ūn

j + 5
12�

3ūn

j+ 1
2

)
�f

j+ 1
2

− 1
2

(
�2fj + 1

3�
3f

j+ 1
2

)

In the first state, we obtain λ∗ = 0.4015 while in the second case we obtain λ∗ = 0.4476.
Then we choose the critical Courant number as λmax = 0.4015 which satisfies the two states. It

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1682 DEHGHAN AND JAZLANIAN

TABLE I. Errors and orders of convergence for Test 1.

N L1 error L1 order L∞ error L∞ order

CRKS4 scheme
40 0.9981 (−3) – 0.1492 (−2) –
80 0.7281 (−4) 3.7770 0.1697 (−3) 3.1360

160 0.4996 (−5) 3.8652 0.1891 (−4) 3.1658
320 0.3553 (−6) 3.8135 0.2094 (−5) 3.1747
640 0.2042 (−7) 4.1211 0.2308 (−6) 3.1813

CNO4 scheme
40 0.1371 (−2) – 0.1986 (−2) –
80 0.9730 (−4) 3.8161 0.2239 (−3) 3.1490

160 0.6912 (−5) 3.8152 0.2512 (−4) 3.1562
320 0.4695 (−6) 3.8801 0.2792 (−5) 3.1696
640 0.3135 (−7) 3.9043 0.3088 (−6) 3.1764

should be noted that CRKS4 allows a larger Courant number than CNO4 [10] , λmax = 0.3408,
while both methods use similar stencils. Also, the stability restriction of CRK-WENO(Weighted
Essentially Nonoscillatory) [19] is less restrictive than CRKS4. We refer the interested reader to
references [26–30] for more useful research works on the subject of the current paper.

V. NUMERICAL RESULTS

A. Scalar Test Problems

In this subsection, we describe the results of numerical experiments using some Scalar test prob-
lems with periodic boundary conditions. Also we compare results with CNO4 [10]. It should be
noted that in Figures 1–9, results obtained using the methods of CRKS4, CNO4, and exact or
reference solution are shown by ‘×’, ‘�’ and solid line respectively.

Test 1. We start with linear advection equation ut +ux = 0, over the long time interval T = 10,
with the smooth initial condition u(x, 0) = sin(πx). This test is used to check the convergence
rate. We solve the test with λ = 0.9λmax and x ∈ [−1, 1]. The L1 and L∞ errors and orders of
convergence by CRKS4 and CNO4 are shown in Table I. We see that both CRKS4 and CNO4
converge to fourth-order in L1 as the computational grid is refined. But, comparing the magnitude
of errors produced by CRKS4 and CNO4 for this test problem shows that CRKS4 performs better.

Test 2. In this test, we consider linear advection equation ut + ux = 0, over the time interval
T = 4, with the initial condition u(x, 0) = 1 for |x| < 1

3 and u(x, 0) = 0 elsewhere. In this test
problem, we put λ = 0.9λmax and x ∈ [−1, 1]. The L1 and L∞ errors by CRKS4 and CNO4 are
reported in Table II. Our results show CRKS4 yields better accuracy in L1 than CNO4, but results
of errors obtained in L∞ by CRKS4 and CNO4 are comparable.

TABLE II. Errors for approximation of Test 2 at T = 4.

CRKS4 scheme CNO4 scheme

N L1 error L∞ error L1 error L∞ error

25 0.1706 0.3876 0.1903 0.3870
50 0.9710 (−1) 0.4124 0.1102 0.4068

100 0.5486 (−1) 0.4359 0.6477 (−1) 0.4246
200 0.2786 (−1) 0.4226 0.3801 (−1) 0.4395

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Test 2 by N = 100 at T = 4. CRKS4 “×”, CNO4 “.”. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

The approximations at T = 4 on 100 cells are shown in Fig. 1. We note that CRKS4 gives an
overall better solution than CNO4.

Test 3. For the third test problem, we consider the in-viscid Burgers’ equation ut +(0.5u2)x = 0,
with the initial condition u(x, 0) = 1 + 0.5 sin(πx) and λ = 2

3λmax. It is known that the unique
entropy solution of the problem develops a shock discontinuity at Ts = 2/π 	 0.7. In Table III,
we present the errors by CRKS4 and CNO4 after the shock (T = 1.5). Comparing the magnitude

TABLE III. Errors of Burgers’ equation for Test 3 at T = 1.5 (after shock).

CRKS4 CNO4

N L1 error L∞ error L1 error L∞ error

40 0.6287 (−2) 0.5010 (−1) 0.6776 (−2) 0.6023 (−1)
80 0.2859 (−2) 0.5168 (−1) 0.3211 (−2) 0.6179 (−1)

160 0.1368 (−2) 0.5074 (−1) 0.1588 (−2) 0.6150 (−1)
320 0.6490 (−3) 0.4720 (−1) 0.7833 (−3) 0.6048 (−1)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. Test 3 by N = 40 at T = 1.5. CRKS4 “×”, CNO4 “.”. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

of errors by CRKS4 and CNO4 schemes for this test problem shows that the CRKS4 yields better
accuracy in both L1 and L∞ norms when T = 1.5 (after shock). We end this test with the dif-
ferent approximations on 40 cells in Fig. 2. We observe that CRKS4 is sharper than CNO4 when
resolving the shock.

Test 4. In this test problem, we solve the in-viscid Burgers’ equation ut + (0.5u2)x = 0, with
the initial condition u(x, 0) = 1 for |x| < 1

3 and elsewhere u(x, 0) = 0. In this test problem we
set λ = 2

3λmax. In Table IV, we show the corresponding errors for the respective number of cells
and we note that CRKS4 gives better accuracy than CNO4 in both L1 and L∞ norms. In Fig. 3,
we display the different approximations on 80 cells. We see that CRKS4 is sharper than CNO4
on the shock.

B. Hyperbolic Systems of Equations

In this subsection, we test CRKS4 and CNO4 schemes on the system of Euler equations for a
polytropic gas, with γ = 1.4,

∂

∂t


 ρ

ρq

E


 + ∂

∂x


 ρq

ρq2 + p

q(E + p)


 = 0, p = (γ − 1)

(
E − 1

2
ρq2

)
. (18)

Here, ρ, q, p, and E are the density, velocity, pressure, and total energy of the conserved fluid,
respectively. There are two recipes to extend the numerical schemes for solving hyperbolic sys-
tems of conservation laws. The first approach is componentwise extension, also, we can utilize

TABLE IV. Errors of Burgers’ equation for Test 4 at T = 0.64.

CRKS4 CNO4

N L1 error L∞ error L1 error L∞ error

40 0.4699 (−1) 0.4626 0.5857 (−1) 0.5608
80 0.2328 (−1) 0.4133 0.2407 (−1) 0.3273

160 0.1127 (−1) 0.3331 0.1267 (−1) 0.4399
320 0.5496 (−2) 0.2021 0.5983 (−2) 0.3217
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FIG. 3. Test 4 by N = 80 at T = 0.64. CRKS4 “×”, CNO4 “.”. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

characteristic decomposition. In this work, we use the first approach which is less costly (because
we do not need the Jacobian matrix A(u) := ∂f

∂u
and eigenstructure of the system). We choose the

time step dynamically with CFL restriction

�t = 0.9λmaxh

maxj (cj + |qj |) ,

where cj and qj are the local sound speed and velocity, respectively. This time step evaluation
technique can accommodate for problems where the characteristic speeds change wildly in time.

Test 5 (Sod’s Problem). In this test which is taken from [31], we solve (18) with the initial
condition:

u(x, 0) =
{
(1, 0, 2.5)T 0 ≤ x < 0.5,
(0.125, 0, 0.25)T 0.5 ≤ x ≤ 1,

x ∈ [0, 1].

Figure 4 shows the performance of CRKS4 and CNO4 methods at T = 0.16 with N = 100.
Comparing the results in Fig. 4 we note that the CNO4 scheme is still comparable with CRKS4
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FIG. 4. Test 5 by N = 100 at T = 0.16. CRKS4 “×” CNO4 “.” [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

scheme. But the CRKS4 scheme gives better resolution at the two ends of the rarefaction wave,
the contact and the shock.

Test 6 (Lax’s Problem). In this test which is taken from [32] we solve (18) with the initial
condition:

u(x, 0) =
{
(0.445, 0.31061, 8.92840289)T 0 ≤ x < 0.5,
(0.5, 0, 1.4275)T 0.5 ≤ x ≤ 1,

x ∈ [0, 1],

For this more difficult shock tube problem, Fig. 5 shows the performance of CRKS4 and CNO4
schemes at T = 0.16 with N = 100. Similar to the Sod’s test problem, CRKS4 scheme gives
better resolution than CNO4 scheme. In Fig. 5 (a′) we observe that CRKS4 is sharper than CNO4
in particular for the density profile of this Riemann test problem. Also, we observe that there are
oscillations even in the reference solution. It should be noted that these oscillations are due to the
fact that there is a lack of characteristic information, for further details see [19].

Test 7 (Shock-Entrop Problem). In this test which is used by authors of [33], we solve the Euler
equations (18) with a moving Mach = 3 shock interacting with sine waves in density, that is,
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FIG. 5. Test 6 by N = 100 at T = 0.16. CRKS4 “×” CNO4 “.” [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

u(x, 0) =
{
(3.85714, 10.1418096304, 39.16655928489427)T −5 ≤ x < −4,
(1 + 0.2 sin(5x), 0, 2.5)T −4 ≤ x ≤ 5,

x ∈ [−5, 5].

The flow contains physical oscillations which have to be resolved by the numerical meth-
ods(CRKS4 and CNO4 schemes). The “reference solution,” which is a converged solution
computed by CNO4 with 2000 grid points. We test the performance of the CRKS4 and CNO4
methods in smooth regions and the ability to capture shocks with N = 200. We show the numer-
ical solutions of the density profile in Fig. 6 at T = 1.8. We observe that CRKS4 gives better
resolution than CNO4.
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FIG. 6. Test 7 by N = 200 at T = 1.8. CRKS4 “×”, CNO4 “.”. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

FIG. 7. Test 8 by N = 320 at T = 0.01. CRKS4 “×” CNO4“.” [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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FIG. 8. Test 8 by N = 320 at T = 0.03. CRKS4 “×” CNO4 “.” [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

FIG. 9. Test 8 by N = 320 at T = 0.038. CRKS4 “×” CNO4 “.” [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Test 8 (Woodward and Colella’s Problem). For the final test which is taken from [34], we solve
the Euler equations (18) with a shock interaction problem with solid wall boundary conditions,
applied to both ends given by the initial data

u(x, 0) =



(1, 0, 2500)T 0 ≤ x < 0.1,
(1, 0, 0.025)T 0.1 ≤ x < 0.9,
(1, 0, 250)T 0.9 ≤ x ≤ 1,

x ∈ [0, 1],

Integration times are: T = 0.01, T = 0.03, T = 0.038.

The computations are done, using N = 320, and the solution is displayed together with a “refer-
ence solution,” obtained by the CNO4 scheme with N = 2560. In Fig. 7, we show the density, the
velocity, and the pressure at T = 0.01. We observe in the zoomed regions of the density profile
that CRKS4 gives better resolution than CNO4. Also we plot the numerical results of the above
problem in Figs. 8 and 9 at time T = 0.03 and T = 0.038, respectively. We note that the CRKS4
gives better resolution than CNO4.

VI. CONCLUSION

In this article, we have introduced a new fourth-order central Runge-Kutta scheme. For that, we
used the fourth-order reconstruction of Peer et al. [10] and a Runge-Kutta procedure. Numeri-
cal results on scalar test problem show that this scheme resolves discontinuities sharply while
avoiding oscillations. In comparison with the fourth-order central nonoscillatory scheme [10], we
saw that the fourth-order central Runge-Kutta method gives better resolution. The new fourth-
order central Runge-Kutta technique was extended to solve hyperbolic systems of conservation
laws using a componentwise extension. Then we solved the Euler equations of gas dynamics,
and we observed that the proposed scheme gives better resolution than the fourth-order central
nonoscillatory method.

The authors would like to thank A. A. I. Peer for his valuable programming advice. The authors
are very grateful to the three reviewers for carefully reading the paper and for their comments.
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